Knowledge Center
  • Get started
  • Tutorials
  • Platform interface
  • AI Concepts
  • Connectors
  • Troubleshooting
  • Community
Peltarion
  • Get started
  • Tutorials
  • Platform interface
  • AI Concepts
  • Connectors
  • Troubleshooting
  • Community
Knowledge CenterToggle
  • Get started with the platform
    • AI concepts
    • Deep learning problem types
    • Data for deep learning
    • Peltarion workflow
    • Tutorials that will get you onboarded
  • Tutorials
    • Car damage assessment
    • Movie review feelings
    • Find similar Google questions
    • Sales forecasting with spreadsheet integration
    • Integrate AI into Microsoft Excel for sales forecasting
    • Integrate AI into Google Sheets for sales forecasting
    • Find similar images of fruits
    • Classify text in any language
    • Buy or not / Predict from tabular data
    • Deploy an operational AI model
    • Build your own music critic
    • Book genre classification
    • Use AI to detect fraud
    • Self sorting wardrobe
    • Detecting defects in mass produced parts
    • Plant disease detection
    • Understand the mood of your team with Slack data
    • Product recommendations with image similarity
    • Assessing road quality
    • Verify images with Zapier and Peltarion
    • Look deep into DNA
    • Skin cancer detection
    • How to improve a model that uses tabular data
    • Predict real estate prices
    • Kaggle competition with zero code
    • Writing style tutor
    • Denoising images
    • Create a no-code AI app
    • Audio analysis for industrial maintenance
    • Classify customer complaints with sentiment analysis
    • Integrate your AI model in PowerApps
    • AI application using Adalo and Zapier
    • Improve sentiment analysis
    • Shape up your Slack chaos
  • Platform interface
  • Projects view
    • Search and filter for projects
  • Datasets view
    • Data preprocessing
      • Tabular data preprocessing
      • Text data preprocessing
      • Image data preprocessing
    • Import files and data sources to the Platform
      • Requirements of imported files
      • Upload local file
      • URL import
        • URL scheme for data upload
        • URL import from Azure Blob Storage
      • Data library: ready-made datasets
      • Import from Azure Synapse
      • Import from BigQuery
    • Edit an imported dataset for use in experiments
      • Dataset features
      • Feature encoding
        • Categorical encoding
        • Binary encoding
        • Image encoding
        • Text encoding
        • Numeric encoding
        • Normalization
      • Feature distribution
      • Subset of a dataset
      • Remove rows with missing values
      • Outlier handling
    • Working with multiple dataset versions
    • Search and filter for datasets
    • Datasets used in tutorials
      • Calihouse dataset
      • Fashion MNIST dataset
      • MNIST dataset
      • Tagger dataset
      • The Large Movie Review Dataset
      • Bank marketing
  • Modeling view
    • Build an AI model
      • Blocks
        • Inception
        • ResNetv2
        • EfficientNet
        • Multilingual BERT
        • English BERT
        • Universal sentence encoder
        • XLM-R Encoder
        • Input
        • Target
        • Output
        • Dense
        • Activation
        • Scaling
        • Dropout
        • Batch normalization
        • Random transformation
        • Random crop
        • 2D Convolution
        • 2D Deconvolution block
        • 2D Depthwise convolution
        • Max pooling 2D
        • 2D Average pooling
        • Global average pooling 2D
        • Global max pooling 2D
        • 2D Upsampling
        • 2D Zero padding
        • Average pooling 1D
        • 1D Convolution
        • Global average pooling 1D
        • Global max pooling 1D
        • Max pooling block 1D
        • 1D Upsampling
        • 1D Zero padding
        • Flatten
        • Concatenate
        • Add
        • Multiply
        • Reshape
        • Embedding
        • BERT Encoder
        • Text embedding
        • BERT Tokenizer
      • Class weights
      • Activations
        • Linear
        • ReLU
        • Swish
        • Sigmoid
        • Softmax
        • Tanh
      • Loss functions
        • Binary crossentropy
        • Categorical crossentropy
        • Mean absolute error
        • Mean squared logarithmic error (MSLE)
        • Mean squared error
        • Poisson
        • Squared hinge
        • Focal loss
    • Run a model
      • Early stopping
      • Optimization principles (in deep learning)
        • Learning rate schedule
      • Optimizers
        • Adam
        • AdamW
        • Stochastic gradient descent
        • Adadelta
        • Adagrad
        • Adamax
        • AMSgrad
        • Nadam
        • RMSprop
      • Experiment states
    • Improve your model
    • Continue experimenting
      • Duplicate experiment
      • Iterate experiment
      • Tune experiment
      • Copy blocks with weights to another model
    • Image augmentation
    • Search and filter for experiments
      • Experiment tagging
    • Information pop-up
    • Modeling canvas controls
  • Evaluation view
    • Loss and metrics
    • Predictions inspection
      • Confusion matrix
      • Scatter plot
      • ROC Curve
      • Download predictions
    • Classification loss metrics
      • Binary accuracy
      • Categorical accuracy
      • Binary error
      • Categorical error
      • Precision
      • Macro-precision
      • Micro-precision
      • Recall
      • Macro-recall
      • Micro-recall
      • AUC / Area under curve
      • F1-score
      • Macro F1-score
      • Micro F1-score
      • Intersection over union
      • Exact match ratio
    • Regression loss metrics
      • MAE / Mean absolute error
      • MSE / Mean squared error
      • RMSE / Root mean squared error
      • MAPE / Mean absolute percentage error
      • R2 / R-squared
    • Measure performance when working with imbalanced data
    • Search and filter for experiments
      • Experiment tagging
    • Archive experiment
  • Deployment view
    • Monitoring deployment
    • Deploy to API limitations
    • Search and filter deployed experiments
    • Deployment web app
  • Peltarion connectors
    • Model download
      • Peltarion prediction server
      • Model download for MLflow
      • Model download for UIPath
      • Model download for TF serving
      • Python utility functions
    • AI for Sheets
    • AI for Excel
    • PowerApps connector
    • Bubble connector
      • Bubble plugin for text similarity
      • Bubble plugin for classification and regression
    • Zapier connector
    • Test with Postman
      • Test image similarity deployment
    • Data API
    • Deployment API
      • Deployment API in Python
      • Deployment API in cURL
    • Similarity API
      • Similarity API in Python
      • Similarity API in cURL
    • Download API spec
    • Test the deployment from a Python script
  • Organization management
    • Single sign-on
    • Organization settings view
      • Subscription view
        • End of organization quota plan
      • Members view
      • My profile view
  • Cheat sheets
    • BERT - Text classification / cheat sheet
    • Multi-label image classification / cheat sheet
    • Single-label image classification / cheat sheet
    • Binary image classification / cheat sheet
    • Image segmentation / mark a single object type within an image / cheat sheet
    • Image similarity / cheat sheet
    • Text similarity / cheat sheet
    • Single-label text classification / cheat sheet
    • No-code AI / cheat sheet
    • Multi-label text classification / cheat sheet
  • Improve experiments
    • Tips to improve for beginners
      • Classification models - Evaluate and improve
      • Regression models - Evaluate and improve
      • Segmentation models - Evaluate and improve
      • Similarity models - improve
    • Tips to improve for intermediate users
  • Glossary
  • AI concepts
    • Bias in AI
      • Data bias
        • Historical bias
        • Measurement bias
        • Label bias
        • Reporting bias
        • Selection bias
        • Group attribution bias
        • Implicit bias
        • Aggregation bias
      • Modeling and deployment bias
        • Evaluation bias
        • Default effect
        • Automation bias
        • Deployment bias
        • Emergent bias
      • Other sources of bias
        • Circular dependency
        • Protected attributes
        • Imbalanced data
    • Image similarity
    • Text tokenization
    • Natural Language Processing
    • Transfer learning
  • Terms
    • Dataset licenses
      • 17k Mobile strategy games
      • Boat types
      • Book summaries
      • Calihouse
      • Car damage
      • Cifar-10
      • Deep learning yeast UTRs
      • DeepWeeds
      • Defects in metal casting
      • Fashion-MNIST
      • Fine food reviews
      • Flower photos
      • Freesound Audio Tagging
      • Fruits 360
      • Google Natural Questions
      • German Traffic Sign Recognition Benchmark (GTSRB)
      • Grocery store
      • Imagenette
      • IMDB
      • Industrial machinery operating conditions
      • MNIST
      • News headlines
      • Most downloaded public domain books
      • Pneumonia detection
      • Oxford 102-category flowers
      • Oxford IIT Pet
      • PlantVillage
      • Pokemon images
      • Sign language for alphabets
      • Sign language MNIST
      • Skin lesion segmentation
      • Spoken verbs
      • Stack Overflow Tags
      • Stanford Online Products
      • Tagger
      • Tencent ML-Images
    • Pretrained licenses
      • ResNet
      • EfficientNet
      • BERT
      • Sentence XLM-R license on the Peltarion Platform
      • Universal sentence encoder
      • VGG
      • DenseNet
      • MobileNetV2
  • Troubleshooting
    • Error messages
    • Known issues
  • FAQ
    • Technical requirements
  • GitHub repositories
  • Courses
  • Documentation /
  • Terms /
  • Dataset licenses

Dataset licenses

The Peltarion Platform provides datasets for use on the platform.

  • 17k Mobile strategy games

  • Book summaries

  • Calihouse

  • Car damage

  • Cifar-10

  • Deep learning yeast UTRs

  • DeepWeeds

  • Defects in metal casting

  • Fashion-MNIST

  • Flower photos

  • Freesound Audio Tagging

  • Fruits 360

  • Google Natural Questions

  • German Traffic Sign Recognition Benchmark (GTSRB)

  • IMDB

  • Industrial machinery operating conditions

  • MNIST

  • Most downloaded public domain books

  • Oxford 102-category flowers

  • Oxford IIT Pet

  • PlantVillage

  • Pokemon images

  • Skin lesion segmentation

  • Stack Overflow Tags

  • Stanford Online Products

  • Tagger

Contact us
  • Find us
    • Contact us
  • Company
    • About us
    • Join us
    • Partners
    • Press & media
  • Community
    • Knowledge center
    • Events
    • Webinars
  • Legal notice
    • Privacy policy
    • Terms
    • Copyright © 2022 Peltarion.
    • All rights reserved.