Applied AI & AI in business /

Reducing the skills gap in deep learning

February 5 2019/3 min read
  • Luka Crnkovic-Friis
    Luka Crnkovic-FriisCEO & Co-Founder

The AI skills gap is one of the biggest barriers keeping AI from entering the mainstream as a viable business-enabling and problem-solving technology. With an estimated 700,000 job openings for data scientists in the U.S. alone expected by 2020 this skills gap is acute. And we think the problem will only worsen. As AI-based projects become more prevalent, demand will only increase.

Without a change in trajectory, the competition for data science talent is going to significantly handicap organizations, especially smaller organizations without deep pockets. In the deep learning space, where technology and the underlying domain are even more complex, the talent issue will be even more acute.

Until now, most conversations around a solution have been primarily about increasing data science educational opportunities. Master’s and Ph.D.s in computer science and mathematics plus more courses focusing in on “data science” are a route to fill the gaps. The huge increase in more practical and applied courses linked to machine learning and deep learning from online open courses and/or top technology schools and other providers show the education market is responding.

But despite growing access to data science programs and the hunger for data scientists, the disparity between capable data scientists and the need for their talent widens every day. Additional solutions are necessary if AI is to fulfill its promise of changing the world.

Part of the answer is the operational AI platform.

The solution: Operational AI

Operational AI is a new type of software platform designed for a wider audience than elite data scientists. It’s a cloud-based platform with an intuitive graphical interface where the end-to-end workflow of a deep learning project can be run within a single environment without relying on additional resources, tools, software and bespoke coding. Operational AI covers the full workflow, from data preparation to model build to evaluation and deployment.

Additional solutions are necessary if AI is to fulfill its promise of changing the world

An operational AI platform can deliver performant models and then integrate into an organization's external and internal-facing systems to allow a more repeatable and predictable deployment flow. Operational AI platforms offer faster deployment, more data flexibility, heightened usability, audit transparency and collaboration capability. Essentially, an AI platform is both comprehensive and flexible. This, in and of itself, helps address the skills gap with “usable” software that allows a broader group of users to lead AI projects to completion.

With operational AI in place, an organization is no longer 100% reliant on these scarce data scientists for deep learning expertise, but can instead enable others within the data science team to lead projects or go wider in the development organization.

The exponential effect of community enablement

Along with any new technology comes a need for support and community. Any software becomes better when enabled, which is why the great software companies actively enable their users to excel by providing not just a platform, but the resources and means to interaction so that users can better engage with the platform and each other. An enabled community of users creates a deeper understanding of how to use the software, but also how to push the limits of imagination and skill and allow users to do great things with the software.

Operational AI is an exciting field that’s evolving rapidly and constantly

Communities teach users how to use software with more expertise, and inspire them to do great things with that knowledge. Communities build momentum as members learn from each other ⁠— both from experts in their midst and from peers working toward similar usage and outcomes. This propels not just the users but the entire platform forward.

For instance, the currently developing Peltarion operational AI community is a peer-to-peer network that welcomes a diverse crowd of users within the field of AI. It welcomes both those with a lot of experience and those brand new to AI efforts. Operational AI is an exciting field that’s evolving rapidly and constantly, so this operational AI community will serve to empower users to contribute to the advancement of the field and to create a productive support network.

One part of moving beyond the data science shortage is creating platforms that support AI which abstract up from the complexity.

Deep learning may be a complex technological arena, but via an operational AI platform, more users from all types of organizations will be enabled to apply AI to more initiatives with enormous business and humanitarian value.

Want to know more about what Operational AI is and its advantages? Read the white paper The case for Operational AI.

  • Luka Crnkovic-Friis

    Luka Crnkovic-Friis

    CEO & Co-Founder

    Luka Crnkovic-Friis is the CEO of Peltarion and has more than 15 years of experience with neural networks and their industrial applications. He holds a master’s and a bachelor’s degree of science in electrical engineering from the KTH Royal Institute of Technology in Stockholm. After being awarded his master’s in 2004, Luka co-founded Peltarion with Måns Erlandson. They were convinced then – as they are now – that artificial intelligence represents the next Industrial Revolution, but that it needs the right tools in order to be truly accessible, affordable and usable for everyone.

02/ More on Business & AI